

Real-Life Software-Defined Security

Ivan Pepelnjak (ip@ipSpace.net) Network Architect

ipSpace.net AG

ip Space

Who is Ivan Pepelnjak (@ioshints)

Past

- Kernel programmer, network OS and web developer
- Sysadmin, database admin, network engineer, CCIE
- Trainer, course developer, curriculum architect
- Team lead, CTO, business owner

Present

Network architect, consultant, blogger, webinar and book author

Focus

- SDN and network automation
- Large-scale data centers, clouds and network virtualization
- Scalable application design
- Core IP routing/MPLS, IPv6, VPN

Every Well-Defined Repeatable Task Can Be Automated

Hierarchy of Network Needs (also Applies to Security)

Source: Jeremy Stretch, packetlife.net

Deployment Readiness (aka Reality Check)

Traditional Virtual Segments

- Security zones implemented with virtual L2/L3 segments
- Multiple applications are typically deployed in the same zone
- Inter-zone traffic is inspected, intra-zone traffic is not → an intruder can easily move laterally and break into other applications

More in IPv6 Microsegmentation webinar

Microsegmentation 101

- More-or-less stateful firewall (usually reflexive ACL) protects every server
- Implemented in hypervisors (VM NIC firewalls) or ToR switches
- Centrally managed security policies
- Controller pushes policies to network edge devices

Benefits

- Every server is protected, even against other servers in the same tier
- Centralized security policies
- VLANs are no longer a security mechanism

Microsegmentation: Sample Products

Hypervisor-based products:

- OpenStack and CloudStack security groups (implemented with KVM iptables)
- VMware NSX
- Microsoft Hyper-V
- Nuage VSP
- Juniper Contrail
- Cisco ACI with AVS

ToR-based products:

• Cisco ACI (pure packet filters, also less effective in virtualized environments)

More in Virtual Firewalls webinar

Questions to Ask

- How are security rules created?
- Stateless or stateful?
- Is state moved with the VM?
- Filtering in kernel module or userland?
- Per-hypervisor control VM?
- Is control VM involved in flow setup?
- What happens when control VM fails?

in Snace

ip Space

VMware NSX for vSphere Distributed Firewall

- Per-host in-kernel firewall + agent
- Central management (NSX Manager)

Performance enhancements

- Firewalling in a loadable kernel module
- Firewalled traffic no longer traverses userland
- No per-host firewalling or management VM
- Managed through UWA

Firewalling functionality:

- Stateful L3/4 firewall, matching on IP addresses or vSphere objects
- ARP and other L2 traffic filters
- Source IP address validation
- DHCP snooping and ARP snooping (NSX 6.2)
- IPv4 and IPv6

More in VMware NSX Architecture webinar

NSX for vSphere Third-Party Firewalls

- Distributed firewall rule redirects traffic to third-party firewall
- Third-party solution resides in a VM on the same host
- Configured through NSX Manager firewall rules or service composer

Example: Palo Alto Networks integration

- Simple filtering rules implemented in NSX distributed firewall
- Application-level inspection implemented in Palo Alto virtual firewall
- Central management through NSX Manager and Panorama
- Automatic creation of security groups from vCenter VM attributes

Microsegmentation in Public Clouds

Summary	ound Ru	Ules Outbound Rules	Та	gs			
Cancel Save							
Туре		Protocol		Port Range	Source		Remove
HTTP (80)	\$	TCP (6)	* *	80	0.0.0.0/0	0	×
HTTPS (443)	\$	TCP (6)	÷	443	0.0.0.0/0	0	×
SSH (22)	\$	TCP (6)	÷	22	192.0.2.0/24	0	×
RDP (3389)	\$	TCP (6)	÷	3389	192.0.2.0/24	0	×
Add another rule				S	Source: Amazon VI	PC docum	entation

- Amazon EC2/VPC security rules
- OpenStack or CloudStack security groups
- Simple rules, no ALG
- Deployed in real time

Automating Microsegmentation

Automating Microsegmentation

Every microsegmentation solution has a well-defined API

- Amazon EC2
- CloudStack, OpenStack
- VMware NSX

Cancel Save						
Туре	Protocol		Port Range	Source		Remov
HTTP (80)	\$ TCP (6)	* *	80	0.0.0/0	0	×
HTTPS (443)	\$ TCP (6)	Å. T	443	0.0.0/0	0	×
SSH (22)	\$ TCP (6)	Å.	22	192.0.2.0/24	0	×
RDP (3389)	\$ TCP (6)	Å	3389	192.0.2.0/24		×

Automate deployments of security rules by using microsegmentation API

- Cloudify (AWS, OpenStack, CloudStack, vSphere, vCloud...)
- Ansible (Openstack, CloudStack, EC2)
- PowerShell (vSphere, NSX, Microsoft Hyper-V)

Works best with automated application deployment process

```
ip Space
```

Example: Creating OpenStack Security Rule in Ansible

- # Create a security group
- os security group:
 - cloud: mordred
 - state: present
 - name: foo
 - description: security group for foo servers

```
- os_security_group_rule:
 cloud: mordred
 security_group: foo
 protocol: tcp
 port_range_min: 80
 port_range_max: 80
 remote ip prefix: 0.0.0.0/0
```

More in Network Automation workshop

Validating Microsegmentation

ipSpace

ip Space

Example: Amazon Inspector

Amazon Inspector - Findings

Inspector findings are potential security issues discovered during Inspector's assessment of the specified application. Learn more.

Add	Add/Edit attributes								
T	T Filter								
\bigcirc		Severity		Application	Assessment	Rule package	Finding		
0	•	High 🚯		Customer Processing	Comprehensive-Assessment	Authentication Best Practices	Instance i-aac4c46		
\bigcirc	•	High 🚯		Customer Processing	Comprehensive-Assessment	Common Vulnerabilities and Ex	Instance i-aac4c46		
\bigcirc	•	High 🚯		Customer Processing	Comprehensive-Assessment	Authentication Best Practices	No password comp		
\bigcirc	۲	Informational 0		Customer Processing	Initial app	PCI DSS 3.0 Readiness	Instance i-aac4c46		
\bigcirc	•	Informational 0		Customer Processing	Initial app	PCI DSS 3.0 Readiness	The machine i-aac		
\bigcirc	•	Informational 0		Customer Processing	Comprehensive-Assessment	Operating System Security Best	No potential securi		
\bigcirc	٠	Informational 0		Customer Processing	Comprehensive-Assessment	PCI DSS 3.0 Readiness	The machine i-aac		
\bigcirc	•	Informational 0		Customer Processing	Comprehensive-Assessment	Network Security Best Practices	No potential securi		
0	۲	Informational 0		Customer Processing	Comprehensive-Assessment	PCI DSS 3.0 Readiness	Instance i-aac4c46		
\bigcirc	٠	Informational 0		Customer Processing	Initial app	PCI DSS 3.0 Readiness	A machine with Ins		

- Hundreds of built-in rules
- Custom rules (tailored to your security requirements)
- Automatically evaluated and reported

in Snace

VMware NSX Plug-in for Splunk

- Generic rules applied to VMware distributed firewall
- Splunk logs used to create additional (more refined) security rules
- Detailed security rules are inspected and deployed (manually)
- Generic rules are removed after a while

I wouldn't use this approach (see also: halting problem)

DoS Detection and Mitigation Tools

ipSpace

Example: CloudFlare

- Automatic DDoS detection and mitigation
- All visitor traffic passes through CloudFlare servers
- Automatic adjustments (or bypass) through CloudFlare API
- User-written Ansible module ;)

Scale-Out IDS with Coarse-Grained Flow Forwarding

- Traffic from Internet link is mirrored to a distribution switch
- Coarse-grained flows (PBR rules) deployed on the switch
- Flow granularity adjusted in real time if needed
- Each appliance receives all traffic from a set of endpoints complete session and endpoint behavior visibility

Open-Source tool: SciPass (Indiana University)

Remote-Triggered Black Hole: a Decade of SDN

- Install a host route to a bogus IP address (RTBH address) pointing to null interface on all routers
- Use BGP to advertise host routes of attacked hosts (modified next-hop or BGP community)
- Use uRPF to drop traffic from DoS sources

Widely used in ISP environments

BGP FlowSpec: RTBH on Steroids

Controllers can use BGP to install PBR-like forwarding entries into Flowspec (RFC 5575)-capable routers

- Matches on source/destination IP prefixes and ports, IP protocol, ICMP code, TCP flags, packet length, DSCP code …
- Functionality almost identical to OpenFlow

Use cases: distributed fine-grained filters or PBR

Implemented on Juniper, Cisco and ALU devices, used by CloudFlare

Scale-Out IDS Using OpenFlow to Block Traffic

DoS detection system reports offending X-tuples

- Source IP addresses
- Targeted servers
- Applications (port numbers)

OpenFlow controller installs drop flows

Demonstration: Arista + Palo Alto

- Arista switch runs syslog server
- Palo Alto firewall logs permitted sessions via syslog to Arista switch
- Arista switch installs shortcut entries for predefined class of flows

Use case: reduce firewall load by shortcutting high-volume flows

Other Security-Related SDN Use Cases

ipSpace

Other Security-Related SDN Use Cases

- Software-defined WAN
- Service insertion
- Programmable network taps
- Tap aggregation networks
- Network monitoring
- Scale-out Network Services
- Consistent edge policy enforcement

Deployment readiness

- Products, concepts, open-source...
- From shipping products to DIY frameworks
- Explore → evaluate → pilot → deploy

Goal: you'll be speaking about your deployment experience @ Troopers 2017 ;)

More Information

in Snace

Advanced SDN Track

More information @ http://www.ipSpace.net/SDN

Network Automation Track

More information @ http://www.ipSpace.net/NetOps

SDN, OPENFLOW AND NFV RESOURCES ON IPSPACE.NET

Software-defined networking (SDN) can mean anything, from programmable network elements to architectures in which control- and forwarding planes reside on different devices.

The resources listed on this page will help you understand SDN, its implications and its applicability in your environment.

SDN TRAINING AND CONSULTING

- On-site and online consulting
 SDN, OpenFlow and NFV Workshop
 - Software Defined Data Centers (SDDC) Workshop
 - Advanced SDN Training
 - Introduction to SDN
 - Customized webinars and workshops

INDIVIDUAL SDN WEBINARS

- NETCONF and YANG
- Network Programmability 101
- SDN Architectures and Deployment Considerations
- VMware NSX Architecture

MORE SDN WEBINARS

SDN-RELATED BOOKS

Overlay Virtual Networks in Software-Defined Data Centers

BUY NOW

SDN and OpenFlow

PRESENTATIONS

- SDN 4 Years Later (video)
- What is SDN?
- Should I program my network? (video)
- Virtual Routers
- From Traditional Silos to SDDC (video)
- What Matters is Your Business (video)
- Automating Network Security, Troopers 15

MORE SDN PRESENTATIONS

MORE SDDC PRESENTATIONS

Stay in Touch

Web:

Blog:

Email:

Twitter:

ipSpace.net blog.ipSpace.net ip@ipSpace.net @ioshints

in Snace

SDN:ipSpace.net/SDNWebinars:ipSpace.net/WebinarsConsulting:ipSpace.net/Consulting

Questions?

ssnie

Send them to ip@ipSpace.net or @ioshints

JOPUO